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Adaptive Observer Design for Nonlinear Systems Using 
Generalized Nonlinear Observer Canonical Form 
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In this paper, we present an adaptive observer for nonlinear systems that include unknown 

constant parameters and are not necessarily observable. Sufficient conditions are given for a 

nonlinear system to be transformed by state-space change of coordinates into an adaptive 

observer canonical form. Once a nonlinear system is transformed into the proposed adaptive 

observer canonical form, an adaptive observer can be designed under the assumption that a 

certain system is strictly positive real. An illustrative example is included to show the effec- 

tiveness of the proposed method. 
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1. Introduction 

During the last two decades, the area of non- 

linear stabilizing controller design has received 

much attention (Isidori, 1989 ; Nijmeijer and van 

der Schaft, 1990). Very often the control systems 

require the measurement of every system state. 

However, in practical feedback systems all states 

are not available for feedback because it is im- 

possible to measure some of the states. Even if it 

is possible to measure the states, several sensors 

are very expensive. Hence, various output feed- 

back schemes for nonlinear systems have been 

actively researched by system designers e.g.(Son 

et al., 2002 ; Choi and Baek, 2002 ; Choi and Kim, 

2003). Most of effective techniques for the design 

of output feedback controller rely on the state 

observers. 
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The first systematic design of nonlinear observ- 

er was given in (Krener and Isidori, 1983 ; Krener 

and Respondek, 1985), where the nonlinear ob- 

server canonical form was proposed. A simple 

computation technique for the coordinate trans- 

formation of multi-output nonlinear systems was 

provided in (Xia and Gao, 1989). The block 

triangular nonlinear observer normal form was 

proposed by Rudolph and Zeitz (1994) in order 

to design an observer for more general nonlinear 

systems. While those approaches are only appli- 

cable to a class of observable nonlinear systems, 

observer design techniques for unobservable sys- 

tems were proposed by Jo and Seo (2000 ; 2002). 

In particular, when the system cannot be trans- 

formed into the nonlinear observer canonical 

form, Jo and Seo (2002) constructed a nonlinear 

observer by transforming the system into the 

generalized nonlinear observer canonical form. 

The goal of this paper is to study the problem 

of designing adaptive observers for a class of 

uncertain nonlinear systems. It should be noted 

that the aforementioned results assume that the 

system parameters are exactly known. For the 

design of adaptive observers, Marino (1990) pre- 
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sented an observer design method for systems 

whose nominal system can be transformed into 

the nonlinear observer canonical form. In con- 

trast to Marino's result, which also requires the 

assumption that the given system is observable, 

this paper provides an adaptive observer design 

scheme for uncertain nonlinear systems that are 

not necessarily observable. Using the generalized 

observer canonical form proposed by Jo and 

Seo (2002), we present sufficient conditions un- 

der which an adaptive observer can be designed 

for uncertain nonlinear systems. 

The rest of the paper is organized as follows. 

In Section 2 the generalized nonlinear observer 

canonical form in Jo and Seo (2002) is intro- 

duced. In addition, Meyer-Kalman-Yakubovic 

theorem and LaSalle-Yoshizawa theorem are 

also introduced in this section. Section 3 pro- 

poses sufficient conditions under which given 

nonlinear systems can be transformed into the 

adaptive observer canonical form which is based 

on the generalized nonlinear observer canonical 

form. We also discuss the design method of 

adaptive observers with this canonical form. Sec- 

tion 4 is devoted to illustrate the proposed design 

method with a numerical example and finally 

some conclusions are given in Section 5. 

Before we begin, some notations used in the 

paper are to be specified: 

• a Hurwitz matrix is a matrix whose eigen- 

values have all their negative real parts 

• a Hurwitz polynomial is a polynomial whose 

roots have all their negative real parts 

• a symmetirc matrix A ~ R  n×n is said to be 

positive definite if x r A x > O  for all x ~ R  ~, x:4=O 
• a system W(s )  that satisfies W ( j w ) > 0 ,  

V w E R  is said to be strictly positive real (SPR) 

• a vector field f is said to be complete if the 

solutions to the differential equation ~ : f  (x) is 

defined for all t ~ R  
• a function V : R n--~R + is said to be radi- 

ally unbounded if V(x)--~ co as ]x ]---~ 

• Lie Bracket of vector fields f and g (f,  g : 
R n --~ R n) are defined by 

• @ /  0/ E/, g] =~£ - ~ -  g 

• the Jacobian matrix of f (xx, x2) with respect 

to its first and second argument at (x~, x2) are 

denoted by D~/ (xl, x2) , Dz f  (xl, xz) , respectively. 

For the stability definitions such as globally 

uniformly bounded and globally uniformly as- 

ymptotically stability, the reader is referred to the 

reference (Isidori, 1989) for details. 

2. G e n e r a l i z e d  N o n l i n e a r  O b s e r v e r  

C a n o n i c a l  F o r m  

In this paper we shall consider single output 

nonlinear systems with unknown constant para- 

meters 0i 

P 
~=/(x) + g(x, u) + ~,Oiqi(x, u) 

i=l (1) 

y = h ( x )  

in which x ~ R  n, u ~ R  m, y ~ R  1, ~9=[01, -.., 

O p l ~ R  p, f (o) =0, h(0), g(x, 0)=0, V x ~ R  n, 
qi(0, u ) = 0 ,  l < i < p ,  V u ~ R  r. We first consi- 

der the case where no uncertainties are present 

in nonlinear systems (i) ,  i.e., 0=0 .  When there 

are no uncertainties, most of research result on 

nonlinear observers (Krener and Isidori, 1983; 

Krener and Respondek, 1985; Xia and Gao, 

1989; Rudolph and Zeitz, 1994) assumed that 

nonlinear system (1) should be observable, 

which, in turn, requires 

rank{ dh, "", dL~,-lh } = n  (2) 

In order to design an observer for nonlinear 

systems that do not satisfy (2), Jo and Seo (2002) 

proposed the generalized nonlinear observer 

canonical form. Let r ( ~  n) be the largest integer 

that satisfy the followings : 

rank{ dh, " ' ,  dL~-lh }= i (3) 

Definition 2.1 The following nonlinear system 

is called generalized nonlinear observer canonical 

form : 

2o=Aozo+7o(y ,  u) 
z o E R  r, A o ~ R  r×r 

2 ~ = A ~ o z o + A ( y ,  z~) + r ~ ( y ,  y) 
(4) 

z a ~ R  n-r, Aoo~R(n-r )  ×r 
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y=Cozo,  C o ~ R  r 

where 

0 0 " ' 0  01 
A o =  1 0 ... 0 0 C o = [ 0 0 . . . 0 1 ~  

i i i i i '  
0 0 " - 1  0 

Once the given nonlinear system is transformed 
into generalized nonlinear observer canonical 
form, the state observer can be designed easily (Jo 
and Seo, 2002). In order to introduce the condi- 
tions under which such transformation exists, we 
need the following: Given vector field r, the 
vector field X~(r), l ~ i ~ r  is defiend by 

Xi(r)  --ad(~--~ r, 1 < i <<- r (5) 

When there is no confusion, we will denote X; (r) 
by Xi  throughout the paper. 

Theorem 2.2 (Jo and Seo, 2002) There exists a 
global diffeomorphism 

z =  T ( x ) ,  T (O)=0 ,  z E R  ~ 

transforming the system (1) into the generalized 
nonlinear observer canonical form (4) if there 
exists a vector fields r, Xr+l, "", X~ such that : 

i) (dL~h,  r)=&,~-~, O<-i<-r -1  

ii) Lx,h=O,  r + l ~ i < ~  

iii) rank{ )(.1, "", Xn } = n 

iv) [X;, X j l = 0 ,  1<_i, j<-n  

v) [g, X j ] = 0 ,  l < - j < n ,  jq=r 

vi) I f ,  X;~ Espan{ Xr+~, "", Xn} ,  r + l < i < n  

vii) a d j r ,  O ~ i < r - 1  are complete vector 
fields 

Using Theorem 2.2, we can design an observer for 
nonlinear systems with no uncertainties. How- 
ever, for nonlinear system (1) with unknown 
parameters 0, Theorem 2.2 cannot be used and an 
adaptive observer should be designed that takes 
uncertainties into the consideration. 

Definit ion 2.3 A global adaptive observer for 
system (1) is 

w=al(w, L Y, U), w(0)=w0, w ~ R  z, l > n  

~=az(w, 0, y, u), 0(0)=•,  0 e R '  (6) 

2=a3(w, O, y, u), 2 ~ R  n 

that satisfies the conditions (i) and (ii) for every 
x(0) ~ R  n, w o ~ R  z, OoER p for any value of the 

unknown parameter 0, and for bounded I[ x (t) ]1, 

II u(t) l l ,  Vt_>0:  

(i) II w(t)II, II0(t)II, II x(t) -:~(t)II are bound- 
ed for all t ~ 0  

(ii) l im II x (t)  --:e (t)  II = 0  

In order to design a global adaptive observer, 
we need the following result. 

Theorem 2.4 (Meyer, 1965)- Meyer-Kalman- 
Yakubovic (MKY) Let A ~ R  m×n be a Hurwitz 
matrix and b, c r are n × l  vectors. The triple 

(A, b, c) satisfies the strictly positive real condi- 
tion 

Re{  c ( j w I - A ) - l b  }>0  
(7) 

V w ~ ( - o o ,  +oo) 

if and only if, for given positive definite matrix Q, 
there exist a positive definite matrix P ~ R  n×n, 
vector q ~ R  n×l and a constant e > 0  such that 

A r p +  P A  = - q q r - e Q  

e b ~ c  T 

3. Design of Adaptive Observer 

In order to design an adaptive observer for the 
generalized nonlinear observer canonical form 
(4), adaptive observer canonical form is defined 
as follows : 

P 

2o=Aozo+ 7o(y, u)+bSq.Oil~i(y, u) 
i=l 

zoER r, A o ~ R  r×r, b ~ R  r, t3~ : R l x R  m--' R 1 

&o=A-ooZo + A(y, z~) + ~(y,  y) (9) 

~o~ R n-r, A~o~ R(n- r) ×r 

y=Cozo, Co~R ~ 

where, Ao, Co are defined in Definition 2.1. If  we 
define 

I~(Y, u ) = [ f l l ( Y ,  u) ,  "", fin(Y, U) ] r 
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then system (9) can be represented as follows: 

2o=Aozo+7o(y, u) +bf l r (y ,  u) 0 

~,=A,ozo+/.(y. z~) +r~(y. u) (lO) 

y :  Cozo 

Now, we are able to present sufficient condi- 
tions under which nonlinear systems (1) can be 
transformed into adaptive observer canonical 
form (10). 

Theorem 3.1 There exists a global diffeomor- 
phism z = T(x ) ,  T(O)=0, z ~ R "  transforming 
the system (i) into the adaptive observer canoni- 
cal form (10) if there exist smooth vector fields r, 

Xr+l, "", Xn such that: 

i) all assumptions of Theorem 2.2 are satisfied, 

ii) [qi, X~]=0,  l<-i<p, l ~ j ~ n ,  j # : r  

iii) [Xr, q ~ = m ( y ,  y)j~b~X~, l < i~p,  V u ~  

R r , 

where /~i(Y, U) =f0Yffi(~, R) d~'. 

Proof :  It follows from assumptions (ii), (iv), 
(vii) of  Theorem 2.2 and Simultaneous recti- 
fication theorem (Nijmeijer and van der Schaft, 
1990) that there exist a global diffeomorphism 
z =  T (x) = (t~ (x), "", tn (x) ) which satisfies 

that is, in new coordinates 

8 ad('-s) r =  8~7-+ ~ , O < i g r - 1  
(12) 

O - 8 
Let f = f ,  ~Zl-t-"" q-fn ~ - .  From (12), we have 

a&L ,~ r= [ ad?:~ r, f ] = [ ~--~, f ] 

n 3 - 8 0 

which implies that 

8 f i = 0  ' l ~ i < n ,  i#: j+l ,  l < j < r - I  
8z~ 

(13) 
a f~+l=l  ' l < j < r - - 1  8zj 

Moreover, from assumption (vi) of Theorem 2.2, 

we have 

Es, x j=[i, 2: o a ~ / : , : , t ~ Z s 7  a~, 
{ 8 ) ~span aZr+l' ' ~z, J 

which implies that 

0 f i = 0  ' l < i ~ r ,  r + l < j < n  (14) &: 

From (13) and (14), we get 

f , : f , ( Z r )  
A=A(Zr) +z, 

S r = i r ( Z r )  "~Zr-,  

fr+i:.fr+l(Zr, Zr+,, "",  Zn) 

f n = J g n  ( e r ,  Z,r+l, " " ,  Zn) 

Now, we determine the components of the vec- 
tor field g(x,  u) in the new coordinates g =  

:~lg(z, U) .. From (12) and assumption (v) of 

Theorem 2.2, we have 

n O G _ =,.__z,( ±=° ,  
which implies that 

3 ~ = 0 ,  l < i < n ,  0 < j < r - 2  (15) 
3&+ 1 - - -  

Moreover, from assumption (v) of Theorem 2.2, 
we have 

i= l \  O~'j g i ]  0~'i ' 

which implies that 

8 ~ i=0 ,  l~i<-n,  r+l<--j<--n (16) az: 

Thus, it follows from (15) and (16) that 

&=g~(zr, u, l<-i<n) (17) 
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In a similar manner, from assumption (ii), we 
have 

q~=q~(z~, u), l ~ i ~ n ,  l < j ~ p  (18) 

In addition, assumption (iii) leads to (for i=1)  

u ) ~ _ b i ~  (19) 

which implies, together with (18) 

Thus, we have 

qli(Zr, bl): Otl(~ ", u)bMg+C~, l<-i<-r 

C~, r + l ~ i ~ n  

where C~ is an appropriate integration constant. 
Since T (0)=0,  q~ (0, u ) = 0 ,  we have 

c]l~(z~, u ) =  b~fo al(~, u)d~, l < i < r  (20) 

O, r+l<_i<_n 

which implies, together with the definition of 
~(y,  u) 

r 0 

4~(z~, u) =~(z~, u)i__Xl b, ~z, 

For j = 2 ,  "", p, we can similarly get 

r O 
qJ(Zr' bl)--~-t~J(Zr' u)i~=lbi Ozi' l ~ j ~ p  

By virtue of Leibniz's formula and the definition 

of r 

(dh, a d ( - / / r )  8h Ozi+1 :0, O < - i ~ r - 2  

(dh, a ~ - } ) r ) =  0 ~ =  1 

and assumption (ii) of Theorem 2.2, we have 

Lx~h=(dh ' 3 \ Oh 0 ~ Z / = ~ 7 =  , ~ + l ~ j ~ ,  

Because of h (0 )=0 ,  we have y = h ( x ) = z r .  In 
summary, defining 

ro~(y, u)=f~(y)+g,~(y,  u), l<--i<--r 

r~(y,  u) =o~(y ,  u), r+l<--i<-n 

system (1) can be expressed in the new coor- 
dinates as follows: 

P 
21 = )'oi (Y, U) + bl~. 0~/~j (y, U) 

j = l  

P 
2~=Z~-l+)`o~(y, u) +b~O~flj(y, u), 2 ~ i < r  

~ = f  ~(zr+,, "", z~) + y~(y,  u), r + l < i<-n 

Now, we investigate the conditions under which 
there exist an adaptive observer for the adaptive 
observer canonical form (10) 

Theorem 3.2 Suppose that the following 
conditions are met for the system (10) : 

(i) There exist a positive constant k0>0 and 
a positive definite matrix P 2 ~ R  (n-r)×(n-r) such 

that 

vrPz[Dzf~(Y, zo)]v<--ko II v II 2 

V(y ,  za, v) E R r  X Rn-r X R n-r 

(ii) There exist a Hurwitz polynomial k l+  
kzs+"" +krsr-f +s r such that 

bl + b2s +'"  brs ~-~ 
W ( s )  - 

kl + k2s + " " + krsr-1+ s ~ 

is strictly positive real. 
Then, for every bounded input u (t) ,  the system 

(21) is a global adaptive observer for system 
(10). 

~o=Ao~o+ ~'o(y, u)+b/F(y, u) O+K(y-~r) 

~=A~o2o=f~(y, ~) + 7o(y, u) (21) 

~=F/~(y, u)(Y--Zr) 

where K = [kl, k2, "", kr] r is given in assumption 
(ii) and F is an arbitrary symmetric positive 
definite matrix. 

Proof :  Without loss of generality, we assume 
p =  1. Let the error signal be defined by eo = 2 o - -  

Zo, eo:-2o--zo, and e0=t~--0.  Then, it follows 

from (10) and (21) that do=(Ao-KCo)eo+ 
earl(y, u) b. Since kl+kzs+.. .+krsr-1+s r is 
the characteristic polynomial of the matrix A o -  
KCo, it follows from assumption (ii) that matrix 
Ao-KCo is Hurwitz. Since W(s) is realized by 
the triple (Ao-KCo,  b, Co) and since W(s) is 
strictly positive real, Meyer-Kalman-Yacubovich 
theorem can be applied : Given a positive definite 
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matrix L, and a scalar/.t>0, there exist a positive 
definite matrix P and a vector r such that 

( A o -  KCo) rP  + P ( A o -  KCo) 
= _ r r  r - IlL = • _ Q 

Pb=Cro 

Now, consider the following Laypunov function 

V~ (eo, ee) = eroPeo + erF- le~  

The time derivative of V1 is 

"(/'=-eroOeo+2eo(eroPb) 13(Y, u) + 2 e e F - ~ e  
= - -  eroQeo +2ee E (eroPb) B (Y, u) +F-l~o] 

Since b0 = t~ and P b :  Cro, we have 

1/= -- eroQeo+ Zeo[ (eroCro) fl (y, u) +F- t t~ ]  

= -- eroQeo+2eo[ ( 2 r - y )  fl (y, u) + F - ~ ]  
= -eroQeo<O 

which, in turn, implies that eo and e0 are glob- 

ally uniformly bounded, i.e., II ~o (t) --Zo (t)II and 
II O(t)-o(t)ll  are bounded for all t > 0 .  More- 
over, from LaSalle-Yoshizawa theorem (LaSalle, 
1968; Yoshizawa, 1966), we have limeor(t) 
Qeo(t)  =0. Since O is a positive definite matrix, 
we can guarantee that 

lim eo (t) = 0  (22) 

Now, for the convergence analysis of ev, consider 
the following Lyapunov function 

1 r 
½ ( e~) = 2  e~ P2e~ 

where P z ~ R  ~-r)×~n-r) is given by assumption 
(i). From (10) and (21), we have 

~ v = A v o e o +  f v ( y ,  2 ~ ) - f v ( y ,  zv) 

The time derivative of V2 is 

fZ= e ~  [A~oeo + f~ (y, 2~) - f ~  (y, z~) ] 

Mean-value theorem and assumption (i) yield to 

2 = eo P2 [A~oeo + D2f~ (y, ~)  e~] 

- < - ~  II e~ IlZ+e~PzA~oeo 

1 e0 (11 e0 II eolt)(.) - y  ko II II 11 P~A~o II 

I[ P~A~o II ~ 
2 ~  II eo II ~ 

II P~A~o II 2 
2k0 II eo II ~ 

where 2v~{ tP .v+(1-- t ) zv  " 0-<t-<l  }. Since it 
has been already shown that eo is bounded and 
l i m e o ( t ) = O ,  (23) implies that (24) 
t~oo 

lim ev (t) = 0  (24) 

Therefore, it can be seen from (22) and (24) that 
system (21) is a global adaptive observer for 
system (10). 

At first glance, one might think that the as- 
sumption (i) of Theorem 3.2 can be satisfied with 
only very limited class of nonlinear systems. But, 
as is shown in the work of Jo and Seo (2000), it 
is weaker than requiring that 

1) f~(y ,  z a ) = A - 6 z a + f ( y ) ,  and 

2) Aa  is an arbitrary Hurwitz matrix 

where ~(.) is an arbitrary function. So, assump- 
tion (i) is similar to the detectability condition in 
the linear systems theory. Moreover, it seems that 
the assumption (ii) of Theorem 3.2 is rather 
restrictive. But, it is more general form than the 
simple condition that the polynomial brsr-X+ 
• . .+ba is Hurwitz. The following corollary 
express the assumption (ii) of Theorem 3.2 in 
much simpler form. 

Corol lary 3.3 Suppose that the following condi- 
tions are met for system (10): 

(i) assumption (i) of Theorem 3.2 is satisfied. 
(ii) for the vector b=[bl ,  ..-, br] T, the 

polynomial brsr-l+ "'" + bl is Hurwitz and br >0. 

Then, for every bounded input u (t) ,  the system 
(21) is a global adaptive observer for system 
(10), where the observer gain is given by 

K = 1  br (Aob+,~b) (25) 

with an arbitrary constant/ l>0.  

Proof :  Defining error signal as in the proof of 
Theorem 3.2, we have 

~o = ( A o - K C o )  eo+b/3r(y ,  u) eo 

From K=Ek l ,  "", kr] r and (25), we have 
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brbl = Abl 

brkr-a = br-z + Abr-1 
brkr = br-1 + Abr 

which, in turn, implies that 

br (S r + krs r-1 + ' "  + kl) 
(26) 

= (s + A) (brsr-I Av... + bl) 

Since ,~>0 and the polynomial b~J-~+...+bl is 

Hurwitz, the polynomial sr+krsr-~+.. .+kl is 

also Hurwitz. and hence the matrix Ao-KCo  is 

Hurwitz. From (26), we obtain 

Co ( s I - A o ) - l b -  brsr-1 +"" + bl 
sr + kr-lsr-l + "" +kx 

br 
- s + A  

which, in turn, implies 

R e E C o ( j w I - A + K C o ) - a b ]  - b ~ > 0  
/12 + W 2 

Thus, the triple (Ao-KCo ,  b, Co) satisfies the 

strict positive real condition (7) and hence 

Meyer-Kalman-Yacubovich theorem can be ap- 

plied. The remainder of the proof is similar to 

that of Theorem 3.2 and hence omitted. 

According to Theorem 3.1 and Corollary 3.3, 

we have the following main theorem. 

T h e o r e m  3.4 Suppose that the following condi- 

tions are met for system (1): 

(i) all assumptions of Theorem 3.1 are satis- 

fied. 

(ii) all assumptions of Corollary 3.3 are satis- 

fied. 

Then, system (27) is a global adaptive observer 

for system (1): 

2 = T-l([~o ~-~] ~) 

~o=Ao2o+7o(y, u) +bf l r (y ,  u) ~ + K ( y - ~ r )  

~=A~o~o+f~(y, ~)+7~(y ,  u) (27) 

#=F/~(y ,  U)(Y--Z,r) 

K=! b~ (Aob+Ab) 

where /2 is an arbitrary positive constant and F 

is an arbitrary symmetric positive definite matrix. 

4. An Illustrative Example 

In order to illustrate the proposed adaptive 

observer we consider the following nonlinear sys- 

tem 

2, =x2-x~ + u + Oxlu 

22= -xZx2 + x~ s in  x~u + 2OXl U -  Ox3 u 
(28) 

23= -x3-x33+xtx2+x~u+ Ox~u 

y=Xl 

Since 

d h = [ 1  0 0] T 

d (Lsh) = [ -  3x~ 1 O] r 

d (L~h) = [15x~-8XlX2 - 4 x [  0] r 

the system (28) does not satisfy the condition 

(2), and hence it is not observable. Now, we let 
a 

r = 2  so that (3) is satisfied and select z'= axz 

so that the condition (i) of Theorem 3.1 holds. 
3 

According to (5), we have X1----~x 2, X2 = axl 

0 
x~ +Xl ~X3' and X3 can be chosen as X3 = 

0 
O~s so that the conditions (iii) and (iv) are met. 

Since 

q=12x~u-xPu 
[ x~u 

it can be seen that the assumptions (i), (ii), (v), 

(vi), and (viii) of Theorem 3.1 is satisfied. More- 

over, since 

[X2, q] = - -x2u+2u (29) 

L x~u 
=u(ZX~ + X2) 

it is easily seen that the condition (vii) of 
Theorem 3.1 is met with b = [ 2  l] T, a (y ,  u) = u ,  

and f l (y,  u ) = y u .  From ( l l )  we obtain 

[zl] xa/3+x2 
T(X)= Z2 = Xx (30) 

LZ3J --x~/2+x3 
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Using the transformation (30), the system (28) 

can be expressed in the new coordinate as 

follows : 

21 = _ y s +  (y sin y + y 2 )  u+2Oyu 

4 3 22=z1-~ y +u+Oyu 

z 3 = _ z 3 _ ( z 3 + l  2\  3 1 2+ 4 
Y ] - - T Y  Y 

Y : z 2  

(31) 

It can be seen that the condition (i) of  Corol- 

lary 3.3 is met with P2= l ,  k0=l .  From b - -  

[2 1] r, the polynomial s + 2  is Hurwitz, and 

hence the condition (ii) of Corollary 3.3 are 

satisfied. According to Theorem 3.4, an adaptive 

observer for the system (28) is given by 

L~3+~/21 

~1 =_ys+  (y sin yWy2) u+2t~yU+kl (Y--,~,2) 

4 
zZ:Zl - -3  ya + u + Oyu + kz ( y -  zz) 

,~ ^ { , 1 2\ 3 1 
Z3 = --Zs-- ~ Z3± 7 y ) - - 2  yZ+y4 

O= ry u  ( y -  ~2) 

From (25), observer gain is given by 

where A is an arbitrary positive constant. In 

addition, according to Theorem 3.4, the para- 

m e t e r / "  can be chosen as any positive constant. 
The simulations were performed using MATLAB 

and results are shown in Fig. 1 under the follow- 

ing conditions : u = s i n  (rcl/3) * s inOrt /2) ,  /1=2, 

[°;I FI / ' = 5 ,  0 = 1 ,  x ( O ) =  , ~,(0) = , O(O)=0. 

1 

It can be seen from figure that the proposed 

adaptive observer estimates the true state after 
approximately 2 seconds. 

2 , , , 

8- I 
4 . 5  

- I  8 10 12 14 16 18 

~ "  2 4 6 1 12 14 18 t8 

0 . 5  

0 

f 

le 20 

Fig. 1 Simulation Results 

5.  C o n c l u s i o n  

This paper has presented an adaptive observer 

for nonlinear systems using the generalized non- 

linear observer canonical form. We have present- 

ed sufficient conditions for a nonlinear system 

to be transformed into the adaptive observer 

canonical form. Sufficient conditions in terms of 

strictly positive real conditions have also been 

presented under which an adaptive observer exists 

for the proposed canonical form. In addition, the 

stability of the proposed adaptive observer has 
been verified through the computer simulation. A 

possible improvement of the proposed observer 

could be made by weakening the assumptions 

needed in the design of the proposed scheme. 
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